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EVALUATING ERS-I1 ICE MOTION AND CLASSIFICATION PRODUCTS

'mm J

F. Fetterer t , D. Gineris 2

I Remote Sensing Applications Branch. Naval Research Laboratory DET,
Stennis Space Center, MS 39520 2 Sverdrup Technology, Stennis Space Center, MS

ABSTRACT

ERS-I Synthetic Aperture Radar (SAR) imagery from the Alaska create products at ASF. I ere we assess the acct!;acy of the ice
SAR Facility is available to operational ice analysts at the Joint Ice classification product, and compare the ice motion product with
Center. Analysts can use the imagery directly through manual other sources of ice drift information. This work is part of a larger
interpretation. One such use would be to provide information on program which has as its objective the more efficient use of SAR
ice conditions for a field expedition. fi addition, analysts can run data for polar applications.
automated algorithms which produce estimates of ice type and ice
motion from SAR images. Such automated analysis will become 1.2 Data Set
increasingly important if SAR is to be used to improve
climatol-ogies of ice characteristics and to improve the performance ERS- I SAR imagery of the Beaufort Sea, Chukchi Sea. East
of dynamic ice models. Here the ice classification and ice motion Sibe-rian Sea and t "entral Arctic from March and early April 1992
algorithmis devetoped by the Jet Propulsion Laboratory for ERS- I was selected. Wc (hose this time period because of the availability
SAR imagery arc evaluated and results presented. of coincident saftt'lite visible, infrared, and passive microwave

data. and because of the availability of surface validation from the
Acknowledgment. This work was sponsored by the Chief of Beaufort Sea Leadex experiment. Figure 1 shows the coverage of
Naval Operations under program element 603704N, CDR P. the 5 satellite passes from which sixty I(X) km-square images were
Ranelli, program manager. Contribution NRL/PP/7240-92-0002. chosen for the assessment of the classification algorithm. Air

temperature analyses from the Fleet Numerical Oceanography
Center show temperatures well below freezing for the regions

Key words: Sea ice, synthetic aperture radar, operational remote covered by these passes,
sensing

I. INTRODUCTION

1. 1 Objectives L

Through a cooperative agreement between the European Space
Agency, the National Aeronautics and Space Administration, and
the National Oceanic and Atmospheric Administration, the Joint46
Ice Center in the United States has access to ERS- I data from the
Alaska SAR Facility (ASF). We have assembled software tools /'.r4
and a data base of satellite imagery with which to evaluate .
synthetic aperture radar (SAR) image products and to improve the •_'__
operational usefulness of imagery and products. Some
applications for SAR data. such as using ice deformation fields Figure 1. SAR passes selected for evaluation,
from SAR to update ice prediction models, require further
development before they can be implemented operationally.
Others, such as using ice type maps from SAR to improve the 2. CLASSIFICATION
accurcy of arctic-wide ice analyses, are ready now.

In general, operational usefulness depends on the timeliness with

which a SAR imnage can he obtained and analyzed for a desired The ice classification algorithm relies on a priori knowledge of
area, the accuracy of. the result, and the ease with which the backsatter distributions for ice types. Bccaun.e the algorithm uses
product can be relayed to the user. ASF can process SAR data low resolution (240 m) multiple look data, the effect of "speckle"L
within 6 hours of the satellite pass using predicted orbital elements or multiplicative noise need not be accommodated. Backscatter
when necessary. Imagery requested for operational use is measurements obtained by sampling a small portion of a calibrated
displayed on a SAR workstation consisting of a SUN computer image are clustered. The cluster with the most members is labeled
and peripherals. The analyst can create an output product by by referring to a look-up table (LUT) of empirically derived
manually Interpreting an Image, or can run algorithms to backscatterdlstributions for multlyear (MY) Ice (with mean of-tO
automatically produce an ice type map or Ice motion vectors. dB), two classes of first year (FY) ice (a "datrk" FY with
Theme algorithms, which were developed by the Jet Propulsion backscatter of -17 dB, and 'bright" FY with backscatter of -14
Laboratory (JPL), are identical (at this writing) to those which dB), and new Ice or smooth open water (for the winter algorithm).

Proceedings First ERS-1 Sympoalum - Space at the Service of our Environment, Cannes, France, 4 - 6 November 1992
ESA SP-359 (March 1993)
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*~ 4
Mhe centroid of this cluster is then used for maximum likelihood or

mininrriun thl-afice image pixel classification. Tire centroids for the
other ic' typtc, are found simply by using the expected difference 100'

For a full description. see Ref. 1. The algorithm accommodates a
certain amount of variability in the mean backscatter of the t 50
dominant type by labeling it according to the LIlT type it is closest a
to. and shifting all other type centroids accordingly. However,
natural variability in backscatter for ice types and variability in the 60
difference in mean backscatter between types introduces error. 60 a aZ O

2.2 AlgoritJun Performance "

Classification performance is evaluated by comparing the ice type
composition of an image produced by the unsupervised 0
classification algorithm with that produced by supervised 0 20
classification using training sets. The user has the option of U
choosing minimum distance or maximum likelihood classification ON
for either supervised or unsupervised classification. Both work 0 4

equally well for supervised classification, reflecting similarly 0
shaped disltihurions of FY and MY ice in our data set. Scene 0 20 40 60 00 100
classification with maxinumn likelihood take,. about 5 minutes, MY Concentration (%, snpesvised classificaton)
while mniniiurm distance takes half as long. For unsupervised
classification, maximum likelihood perforiis significantly better in
most scenes. The minimum distance classifier noticeably 100
overestimated the percentage of FY ice when MY makes up more
than about 80% of the image, because it misclassifies relatively a 0

dark pixels within MY floes as FY ice., 80a
o

Figure 2 shows a comparison of maximum likelihood supervised .o
classification with unsupervised maximum likelihood algorithm
classification for MY and FY ice. Each data point is the I' 60
percentage of MY or FY ice which results from classifying an * a,,
image using both methods. If supervised classification is regarded . a
as completely accurate, algorithm error can be expressed as the 40-a 0 a a a
percent difference in concentration given by the two methods
(Table I). Mean difference is probably a good measure of error
for MY ice, since the algorithm has a bias toward overestimating • 20 a.
MY ice (Fig. 2. top), while the standard deviation of the 2 a Brih FY

differences may be a better measure for FY ice, since points are
distributed on both sides of the "no error" line (Fig. 2, bottom). If I a
only cases where the percentage of MY is greater than 60% are 0
considered, the error for MY drops to 4% with standard deviation 0 20 40 6) 80 100
of 4%, while that fL.. FY drops to 4% with standard deviation of FY Conmentuauion (%, supervists4 classification)
5%. These errors appear random over the time period and range
of latitudes covered by the images.

Figure 2. (Top) The concentration of multiyear (MY) ice arrived

Table I. Difference in supervised and unsupervised classification at through supervised classification versus that I -,-duced by the

concentrations for all images classified, automated algorithm. (Bottom) As above, for first-year (FY) ice.

Surface Mean Standard
Deviation

MY 8% 12%
Bright FY 8% 10% agreed well (within 0.3 dB for MY and 0.7 dB for FY) with those
Dark FY 8% 14% used by the JPL algorithm. Plots of backscatter versus latitude

All FY 8% 12% show interesting variation for both FY and MY ice (Fig 3). A
second-order polynomial is fitted to the data. One unanticipated
result of back scatter measurements from a supplementary data set

The outlying points in Figure 2 deserve some discussion. FY ice over the Leadex camp was that the backscatter of FY ice in 5
in the fast ice shear zone north of Alaska is classified as MY in 2 descending passes was, on average, about I dil greater than that
scenes because of its bright signature, causing 2 oudying points in of the same ice in 5 ascending passes. We ascribe this to scatter
Figure 2 (top) with concentration values from supervised from ridges in the FY ice, which appear to be oriented
classification of about 10%. The same scenes have corresponding predominantly in the along-track direction for descending passes.
outlying points in Figure 2 (bottom). The algnrithmls specified
domain begin, north of this zone. Two outlyinge points in Figure Most scenes in the data set had little or no open water or new ice.
2 (top) with concentration values of 07% tMY from supervised While FY aid MY ice is reliably classified with a small error.
classificatioti atd N0% MY from tile algorithint re from scenes tt wind-roughew-d water is classified as MY ice, and the backscatter
the southern end of the 15 April pass (Fig. I t FY ice in these signature of ice in freezin g leads may mimic that of FY or MY ice.
scenes has unusually bright mean backscatter of .1 1.2 t1l. A In general. however, experience with the classification algorithm
darker FY type in these scenes is -15.1 dB, while MY from scenes showed that It satisfactorily classifies most imapes In spire of sano.
further north is 4.9 dO. variability in the mean backscatter of classes from iniage t,o irrag".

Variability itn tfie mean blacksc'atter difference between classes fron
2.3 Backscatter Variability Image it Inmage has not been evaluated. Future work Involves

calculating tOn' theoretical misclassification by the algorithm given
"Supervised classification provides a measure of the backscatter of the measutred backscatter distributions, and evaluating seasonal
the ice samples used for training sets. The mean backscatter and regional variation in backscatter from ice and its effect on
values obtained for ice types using 390 samples from 60 Images algorithm perfomiatcte.
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-4- Table 2. Ice motion from SAR compared Ns iih that: -o 't VI IRR
and an operational model (PIPS). Motifn tlirecii. -) sva nor
obtained from PIPS. All image pairs or model runs arc trc'm dates,
in March, 1992.

Image SAR SAR AVIIRR AVIIRl', PIP'S
a pair dates (kntfday) (dirrction) (kmn/day) (direction) (kin/day)

RD26,29 1.5 1490 1.2 169' 2.3
26,29 1.7 40' 0.2 -5), 2.2

-10 a24.26 9.9 3170 4.0 312' 101.7
*24,27 2.8 3180 1.7 31 S' 4.9

U 2 24.29 1.9 318' 0.4 270' 1.7

a

- 1 4 5 9`03.2 Discussion

65 70 75 80 85 9 The accuracy of motion vectors from satellite data depends onl
Lafiu~e accurate geolocation of the satellite data, and on the accurate

location of identical features in sequential inlayery hy an
algorithm. Becauste SAR data are geolocated to within a few liWt

meters; and hecause SAR combines high resolutioni with good

- iliscriminilation tif tloes. the superior accuracy oif motion vectors
fromii SAR is not in quiestion. In contrast. AVHRR itiziges have a

a -i! , ~~fti, di~oui '. kin t naidir toabout 4 kin a

-12 a aw~ath edce. Inl thte -iages usilr here, the coast of %laska was

\ 1300 23otenl 
Cloid\ . %00 hi~ revented checking the geolocuition of the

V& op imagery with the co~tiline. In a larger AVIIRR data xet acquired
-14 for the Icadex esperiment, AVIIRR images. had to be shifted ail

average of 4 kin llwmatchil the coast. If the aver te-e error 11,

-16 AVIIRR geolocatinti i% taken ;is 4 kill, this lead\ ti a wT.ti~irimuu i
qý ~velocity error of 3. 8 ). ii/da v o% er a three -da\ period Fryoirs ill

9,AVI IRR geoloc at iii i. thierefoir-. can account for tihe diiicrc ices inl
a M the mragnitude oif %vclocity between AVHRR and SAR vectors inl

0 Table 2.

The magnitude of eclocity from the P1IPS model is consistently
-22________________ greater than that fromt SAR. PIPS vectors depend to a large extent

65 -70 75 80 85 g0 upon the input wind field. By providing a method ot quantifying
deformation and shear, SARk data can potentially mnodify'thi's

Latitude dependence.

Figtire 3. Backscatter of MY (top) and FY (bottom) ice as a 4. CONCLUSIONS
function of latitude. Backscatter samples are drawn from the 60
images for which supervised classification was perfonned. The wintertime ice classification product is accurate to within

about 10% when cotmpared to the results of supervised
c lassification using training sets. Much of the error is due to
misclassification oh a few images with unusually bright FY ice.
Improved accuracy will come through better definiition of the

3.IEMTO seasonal and regional domain of the algorithm. The small
ICE MTIONstandard deviation of the algorithm when anomalows cases are

1.1 Igril/n Ea~u~iwtexcluded imiplies that algorithm accuracy can be improved by.1 Agorilun valwtionadjusting a priori ice type distributions.

I lie ice mnotion algorithm developed by )PL uses ant area based The SAR motion product resolves shear and deforocution missed
.ross-correlatioit and feature tracking method to produce nmotion byatoetinlmdlndcrsreouinstliedt.
*c(i 'ors on a 5 kill grid. Typically. two 10)0 kin- sq iiare imilages b i prtora n dlardcasrr ot o aelt aa
,p~irated in tintte K ; dai,t vsare stb~mitted to the algoifl'nt i. The I ods'.it is S0ult 01'ties di ffi e ilt to find image pai" .;

Il 'cr selects the itmlecs toi itisuir that some of the saime floes or epcal hniei osn ail.Teiltnlp.,t~ ilh
w1 tutres are preseitt i'ii bo(th. The al gorithni makes, lists, of filters to Most useful opertt 'nally wllen used to Ivalidate mi update ice

eliminate vectors with a low probability of being correct. tn niot lels. wh ichi shlt ms otion over a larger fieldI
several of the iia,a-e pairs evaluated, these filters were not 5RFRNE
successful in eliminating a few obviously erroneous vectors from5.RF ECS
about the image edges. The algorithm is fully described in Ref. 2. 1. Kwok. R., E. Rigmi't. B. Hlolt, and R. (itutot 1Q012.

Identification of sea ice typ-s in spaceborne syntheitic aperture
To evaluate the algorithm, ice motion products were compared radar data, J. f ,''italResi'rar/i. 97, C2, 23'l 24012. r
with ice motion vectors from an operational ice prediction model
(the Polar Ice Prediction System or PIPS, Ref. 3.) and with 2. Kwok. R.. I. C. ('trlatider. R. McConnell, and S Pang 1990,
vectors from satellite infrared data. Five pairs of SAR images An ice motion tracking system at the Alaska SAR FaL ility. IEEE . -.

were selected. Five corresponding pairs of satellite images from of Oceanic En~qinv'c ing, 15, 1,.44- 54.
the Advanced Very High Resolution Radiometer (AVI IRR) were
submitted to a cross -correlation algorithm which produces vectors 3. Preller. R. II. antd P. G. Posey 1989, The 'r,dar 1,I Pre'ditiion .---. ---- ----
on a 10 km grid (Ref 4). The acquisition time for thc SAR images S~vst'm - A Sea Ice' Futrcasting Sysfer". Naval (kemin Research
led that of the AVHRR images by about 8 hours. Motion vectors and Development Activity. Stennis Space Center. NIS. NORI)A
from PIPS are available on a grid with spacing of about 45 km. Rpt. 212. 42p
PIPS vectors are 24-hour forecasts. Vectors from forecasts for
the 3 days corresponding to the SAR motion pairs were averaged. 4. Emery. W. I , Cý W. Fowler. J, IHa%%lkns and :'It Pri 11r
The averages of all the vectors from PIPS, AVHRR, and SAR in 1991, Fram Strait s~atellite image-dlensi -c nil i:ons. I "
the area covered by the SAR vectors are preser"ed in Table 2. Grophms'.Sical Resctati h. 96. C3, 4751-4769.
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